
NeuRL: A Standalone No-Code Web-Based Agent Environment
to Explore Neural Networks and Reinforcement Learning

Scott Siegel
 Department of Biomedical

Engineering
 University of Florida

 Gainesville, Florida, USA
 sns08j@ufl.edu

Amanpreet Kapoor
 Department of Engineering

Education
 University of Florida

 Gainesville, Florida, USA
 kapooramanpreet@ufl.edu

Parisa Rashidi
 Department of Biomedical

Engineering
 University of Florida

 Gainesville, Florida, USA
 parisa.rashidi@ufl.edu

Abstract
Neural networks and reinforcement learning (RL) are
fundamental to machine learning (ML) and AI. Given the
widespread adoption of AI algorithms in industrial sectors,
ensuring students understand these concepts will prepare them
for a technology-driven job market. In this experience report, we
introduce NeuRL, a free and accessible no-code web-based
application that allows innovative real-time exploration of RL and
neural networks. NeuRL provides interactive 3D WebGL
environments, enabling students to experiment with multiple
popular RL algorithms and observe the evolution of agents and
neural networks as agents learn to accomplish tasks. To ensure
NeuRL runs smoothly on low-performance computers, we created
a custom neural network and RL library written in the OpenGL
Shading Language (GLSL). To evaluate NeuRL’s effectiveness, we
introduced it to teach RL fundamentals to 111 students enrolled in
an ML course. After the lesson, students completed a survey that
assessed NeuRL’s usability and learning effectiveness. Students
found NeuRL easy to use and enjoyed its inclusion during the
lesson. To the best of our knowledge, NeuRL is the first tool that
enables students from any background to explore RL and observe
both neural networks and agent behaviors in real time. NeuRL
demonstrates the feasibility and value of providing accessible
web-based tools that empower students to explore AI concepts in
a manner that transcends conventional teaching methodologies.

CCS Concepts
•Human-centered computing →Visualization •Applied computing
 →Education →E-learning •Computing methodologies → Machine
learning

Keywords
Artificial Intelligence, Machine Learning, Reinforcement
Learning, Computing Education, Interactive Visualization, Neural

Networks, Web Application, Machine Learning Education, AI
Education, Gamification

ACM Reference format:
Scott Siegel, Amanpreet Kapoor and Parisa Rashidi. 2025. NeuRL: A
Standalone No-Code Web-Based Agent Environment to Explore Neural
Networks and Reinforcement Learning. In Proceedings of the 56th ACM
Technical Symposium on Computer Science Education V.1 (SIGCSE TS 2025),
February 26 – March 1, 2025, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3641554.3701850

1 Introduction
Machine Learning (ML) and Artificial Intelligence (AI) have
permeated everyday life and are poised to become even more
prevalent in the future. Despite ML and AI's impact on society, the
majority of people have little understanding of the technology
involved, leading to a fear of automation and AI that overshadows
its potential benefits [22]. Equipping students in K-12 and higher
education with an understanding of these tools is essential for
their future application in crucial domains, such as addressing
societal challenges, interpreting complex information, and
identifying cultural and social biases that affect existing models
[34]. One way to educate our students about AI is to develop
interactive Open Educational Resources (OERs) and Massive Open
Online Courses (MOOCs) [18, 31]. OERs are defined as “teaching,
learning and research materials that make use of appropriate
tools, such as open licensing, to permit their free reuse,
continuous improvement, and repurposing by others for
education purposes” by the United Educational, Scientific and
Cultural Organization (UNESCO) [21]. The need for online OERs
became even more evident during the COVID-19 pandemic, which
prevented 1.21 billion students from attending school in person
[15]. In this context, readily accessible OERs are crucial for ML
and AI education.

To address the need for online ML and AI education resources,
we have developed NeuRL, an open-source, web-based application
designed for interactive exploration of neural networks and RL.
Neural networks and RL are integral components of ML and AI and
are used in popular state-of-the-art AI systems, such as ChatGPT
[30, 38] and large language models (LLMs) [6, 28]. NeuRL is
compatible with most computers and mobile devices and is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701850

1064

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641554.3701850&domain=pdf&date_stamp=2025-02-18

SIGCSE TS 2025, February 26–March 1, 2025, Pittsburgh, PA, USA Scott Siegel, Amanpreet Kapoor, & Parisa Rashidi

accessible via this link.1 It offers an engaging, hands-on platform
for students to interact directly with these concepts.

To support educators in integrating NeuRL into their
classrooms, we developed tutorial videos, accessible on YouTube,
to guide them through NeuRL’s features and potential classroom
applications. Additional resources are available for instructors on
GitHub.2 To evaluate NeuRL's effectiveness, we conducted a study
during a 50-minute class session with 111 undergraduate and
graduate students. Students, equipped with laptops, used NeuRL
to participate in an introductory lesson on RL and deep Q-learning
[24]. Following the lesson, students completed a system usability
scale (SUS) survey and a few additional questions to assess their
experience with NeuRL.

The remainder of this experience report is structured as follows:
2 presents an overview of neural networks and RL. Section 3
compares NeuRL with other similar tools for AI education. Section
4 provides the motivation for NeuRL and outlines its design and
key features. Section 5 provides details about the classroom study
and presents the survey results. Finally, section 6 outlines the
importance of NeuRL for AI education and our future goals.

2 Neural Networks and RL
Supervised learning, unsupervised learning, and RL are the three
primary subtypes of ML [10]. Models trained using supervised
learning rely on labeled data, while those trained using
unsupervised learning rely on unlabeled data. In RL, models act as
agents within an environment [3, 20]. These agents receive
information about their environment, known as their state, and
take actions to achieve predefined goals. Agents receive feedback
in the form of rewards, indicating whether their previous actions
led to more favorable states. For example, an agent could be a self-
driving car. If the agent can successfully avoid obstacles, it will
receive a reward, increasing the value of the actions that helped it
accomplish its goal.

Neural networks, also known as artificial neural networks
(ANNs), were originally inspired by biological neurons in the
brain [14]. Just as biological neurons rely on axon terminals to
connect to other neurons’ dendrites, neurons in ANNs are
interconnected by individual weights. These artificial neurons,
commonly called nodes, are organized into layers in classic ANNs.
The neural network utilized in NeuRL consists of three layers, as
depicted in Figure 1. The first layer is known as the input layer,
where each node corresponds to a single input to the network. In
RL, an example of an input could be an agent's position on a single
axis. The last layer is termed the output layer, where each node
corresponds to a single output produced by the network. In RL, an
example of an output could be the predicted value of performing
a specific action, such as moving left or right. The second layer is
called the hidden layer, as it is typically not directly observed
during neural network training. Hidden layers apply activation
functions that transform information received from previous
layers, enabling neural networks to model nonlinear
relationships. Although NeuRL utilizes a single hidden layer,
ANNs can contain multiple hidden layers.

1 https://neu-rl.netlify.app

Figure 1: Illustration of a neural network provided within
NeuRL. The rectangular boxes represent individual nodes.
The nodes are organized into three columns, commonly
referred to as layers. The leftmost column is the input layer,
the column in the middle is the hidden layer, and the
column to the right is the output layer. The weights are
represented by the curved cylinders that are either green or
blue. Green weights correspond to positive values, while
blue weights correspond to negative values. Students can
control the learning rate, which determines the speed at
which weights change.

3 Tools for AI Education
Many state-of-the-art (SOTA) models, such as ChatGPT, contain
billions of parameters and demand substantial computing
resources to operate [38]. Running large models on cloud servers
removes the need for users to purchase hardware, but maintaining
cloud-based servers becomes increasingly more expensive as the
number of simultaneous users increases. Fortunately, the
fundamental concepts that empower SOTA models can often be
taught using smaller model variants, which can run on low-power
machines. Providing such models for free in web browsers
expands public access to ML and AI education because it removes
the need to understand code or preinstall deep learning (DL)
libraries on specialized hardware. Goh et al. [13] provides a
detailed list of web applications for ML visualization and
education.

Deep Playground [7] provides a no-code solution for users to
experiment with various neural network hyperparameters, such
as the learning rate, the number of nodes in the hidden layer, or
the number of hidden layers. The tool includes 2D visualizations
of neural network weights as well as heatmaps to display the
outputs of individual neural network nodes. Deep Playground
relies on a custom neural network library written in JavaScript to
train neural networks. Training neural networks in JavaScript
requires the machine's CPU to perform each computation.
Because JavaScript is inherently a single-threaded programming
language, designating CPUs to perform neural network

2 https://github.com/snsie/neurl-resources

1065

https://neu-rl.netlify.app/
https://github.com/snsie/neurl-resources

NeuRL: A Standalone No-Code Web-Based Agent Environment to Explore Neural
Networks and Reinforcement Learning

SIGCSE TS 2025, February 26–March 1, 2025, Pittsburgh, PA, USA

computations can quickly overload machines. CNN Explainer [36]
and GAN Lab [17] are web-based tools that teach the
fundamentals of convolutional neural networks (CNNs) and
generative adversarial networks (GANs), respectively. Both tools
rely on the Tensorflow.js DL library [33] which provides a CPU-
bound JavaScript API to interact with smaller DL models. NeuRL
originally relied on Tensorflow.js, but the library’s CPU-bound
API became a significant performance bottleneck when interfaced
with hundreds of agents. Therefore, we created a custom library
that provided a GPU-bound interface between agents and neural
networks.

To the best of our knowledge, available free resources for RL
education necessitate coding skills and usually depend on DL
libraries. OpenAI’s Gymnasium [7] library is the most popular
known resource for testing RL algorithms but contains limited
visualization features and does not provide a no-code user
interface. ML-Agents [16] is a popular RL resource that uses the
Unity game engine to visualize trained agents. Unfortunately, ML-
Agents requires users to install Unity and a suite of Python-based
libraries. Additionally, coding knowledge is required to modify
experimental setups within ML-Agents. Table 1 compares
NeuRL’s key features with Gymnasium and ML-Agents.

Table 1. Comparison of Key Features

Feature NeuRL
ML-

Agents
Gymnasium

No Installation
Required ✓ ✗ ✗

No DL Library
Dependencies ✓ ✗ !

Compatible with
Mobile Devices ✓ ✗ !

Includes Interactive 3D
Visualizations ✓ ✓ !

No Coding Knowledge
Required ✓ ! ✗

Entries marked with an exclamation mark imply limited compatibility.

4 Motivation and Design
Despite the numerous potential applications of RL in society,

the field is still considered to be in its infancy [35]. RL-related
research is hindered by several key challenges, such as a lack of
simulation environments, limited observability of environments
as agents are being trained, and a lack of learning resources [10,
32]. Another significant challenge is that the current RL resources
necessitate software installation beforehand, which has proven to
be a frustrating obstacle for students [19]. Offering a free and
accessible no-code web-based tool for RL education that doesn’t
require installation or coding knowledge and enables real-time
observation of agents and networks addresses these needs. NeuRL
is the first web-based RL visualization tool designed for education,
with the potential to stimulate RL-related research.

4.1 Software Overview
When developing NeuRL, we prioritized software that offered

scalability and accessibility. To achieve both objectives, NeuRL
was designed as a single-page application (SPA) that can be
accessed through any modern web browser. NeuRL is hosted as
static HTML files and served free of charge using Netlify’s cloud
platform [39]. Because services such as Cloudflare [9] provide free
unlimited bandwidth for static websites, hosting NeuRL will
remain free, regardless of the number of users.

NeuRL’s user interface (UI) was created using Typescript and
React [11] and the interactive 3D WebGL environments were
created using Three.js [5]. Blender [4] was used to design complex
3D objects and generate UV texture maps [25] to combine multiple
material objects into a single material object.

4.2 Neural Network and RL Library
Because JavaScript is a single-threaded language, training

multiple agents in parallel using neural networks would not be
feasible in real time. Therefore, a custom neural network and RL
library was written using GLSL [29] and compiled into eight
separate compute shaders. Parameters in compute shaders are
stored as 2D matrices of pixels, with each pixel holding four
separate floating-point values. GLSL scripts enable the
manipulation of individual pixels and are compiled onto GPUs,
enabling parallelization without requiring the preinstallation of
DL libraries, a major advantage of using NeuRL. Calculating the
neural network's forward and backward passes and updating
agent states are broken into eight sequential steps (Figure 2).

The 3D models depicted in NeuRL are created as meshes using
Three.js. Meshes contain a geometry object that determines their
vertex positions and a material object that determines their
appearance. Both objects rely on separate GLSL shaders to compile
changes in position and appearance onto GPUs. To interface
meshes with NeuRL’s RL library, we modified these geometry and
material shaders to track specific parameters within our compute
shader RL library and visually represent that information by
updating the mesh’s position or color. This processing pipeline
takes place entirely on GPUs and is the fundamental reason why
a custom neural network and RL library was created for NeuRL.

Python-based implementations to explore RL, such as
PyTorch’s deep Q-learning tutorial [26], often use a single agent’s
replay memory to train networks. The environment is simulated at
a very high frequency, which reduces the time a user has to wait
but makes it infeasible to observe agents as they learn. Ensuring
users can visualize every step of the simulation was an important
feature we wanted to provide, but it bound the simulation frequency
to the user’s screen refresh rate, which is normally 30-60 FPS. To
reduce the time users have to wait, our model is trained using
batches of 256 independent agents. This approach reduced average
training time to less than a couple of minutes while allowing users
to visualize and manually control every step of the simulation.

To validate the accuracy of our compute shader pipeline, a
separate testing library was created that compares the parameters
stored on each compute shader with a neural network
implementation written in Python.

1066

SIGCSE TS 2025, February 26–March 1, 2025, Pittsburgh, PA, USA Scott Siegel, Amanpreet Kapoor, & Parisa Rashidi

Figure 2: The neural network and RL library that is compiled
onto eight separate compute shaders. The arrows in the center
of the image depict dependencies between individual shaders.

4.2.1 Compute Shader 1. The first compute shader multiplies
current agent states with the weight matrix that connects the
input and hidden layers, as shown in Equation (1). In this
equation, St represents the agent state matrix at time t, Whl is the
hidden layer weight matrix, and Hnet is the matrix product.

𝐻𝑛𝑒𝑡 = 𝑆𝑡 ∙ 𝑊ℎ𝑙 (1)

4.2.2 Compute Shader 2. The second compute shader applies an
activation function to each element of Hnet, resulting in the hidden
layer output matrix, Hout. It then multiplies Hout with the weight
matrix connecting the hidden layer to the output layer, Wol, to
obtain Onet, the output layer sum, as shown in Equation (2). The
ReLU activation function is used by default, but users can select a
different activation function for experimentation.

𝑂𝑛𝑒𝑡 = 𝐻𝑜𝑢𝑡 ∙ Wol = 𝑓ℎ𝑙(𝐻𝑛𝑒𝑡) ∙ Wol (2)

4.2.3 Compute Shader 3. The third compute shader applies the
output layer activation function to Onet, then uses the policy
dictated by the selected RL algorithm to select an action. The
selected action, At, is then used to derive the next potential state,
as shown in Equation (3). G corresponds to the environmental
procedure to update each agent’s state, which is outlined within
Gymnasium’s source code [7]. An asterisk is used for this state
because the agent may not assume that state if it is determined to
be at a terminal step.

𝑆𝑡+1
∗ = 𝐺(𝑆𝑡 , 𝐴𝑡) (3)

4.2.4 Compute Shaders 4 and 5. The fourth and fifth compute
shaders follow the same procedure outlined in compute shaders 1
and 2, except the potential next state, S*t+1, derived in compute
shader 3, is used as the input to the neural network instead of St.

4.2.5 Compute Shader 6. The sixth compute shader uses the
chain rule to derive the partial derivative of loss with respect to

Onet, as shown in Equation (4). In this equation,
𝜕𝐸

𝜕𝑂𝑜𝑢𝑡
 is derived

using the selected RL algorithm and the mean squared error loss

function and
𝜕𝑂𝑜𝑢𝑡

𝜕𝑂𝑛𝑒𝑡
 is derived by calculating the derivative of the

output layer activation function.

𝜕𝐸

𝜕𝑂𝑛𝑒𝑡
=

𝜕𝐸

𝜕𝑂𝑜𝑢𝑡
∙

𝜕𝑂𝑜𝑢𝑡

𝜕𝑂𝑛𝑒𝑡
 (4)

4.2.6 Compute Shader 7. The seventh compute shader derives
the partial derivative of error with respect to Hnet. The chain rule

is again used, as shown in Equation (5). In this equation,
𝜕𝑂𝑛𝑒𝑡

𝜕𝐻𝑜𝑢𝑡
 is

equal to the output layer weight matrix.
𝜕𝐻𝑜𝑢𝑡

𝜕𝐻𝑛𝑒𝑡
 is equal to the

derivative of the hidden layer activation function.

𝜕𝐸

𝜕𝐻𝑛𝑒𝑡
=

𝜕𝐸

𝜕𝑂𝑛𝑒𝑡
∙

𝜕𝑂𝑛𝑒𝑡

𝜕𝐻𝑜𝑢𝑡
∙

𝜕𝐻𝑜𝑢𝑡

𝜕𝐻𝑛𝑒𝑡
 (5)

4.2.7 Compute Shader 8. The eighth and final compute shader
updates both the neural network weights and current agent states.
Agent states are updated by copying the potential next states
stored in the third compute texture if the agent’s episode hasn’t
ended. Otherwise, the agent’s state is reset.

Equation (6) depicts the algorithm to update the weights

connected to the output layer. In this equation,
𝜕𝑂𝑛𝑒𝑡

𝜕𝑊𝑜𝑙
 is equal to

Hout, and η is the learning rate.

𝑊𝑜𝑙
+ = 𝑊𝑜𝑙 − 𝜂

𝜕𝐸

𝜕𝑊𝑜𝑙
= 𝑊𝑜𝑙 − 𝜂

𝜕𝐸

𝜕𝑂𝑛𝑒𝑡
∙

𝜕𝑂𝑛𝑒𝑡

𝜕𝑊𝑜𝑙
 (6)

Equation (7) depicts the algorithm to update the weights

connected to the hidden layer. In this equation,
𝜕𝐻𝑛𝑒𝑡

𝜕𝑊ℎ𝑙
 is equal to

each agent’s current state, St.

𝑊ℎ𝑙
+ = 𝑊ℎ𝑙 − 𝜂

𝜕𝐸

𝜕𝑊ℎ𝑙
= 𝑊ℎ𝑙 − 𝜂

𝜕𝐸

𝜕𝐻𝑛𝑒𝑡
∙

𝜕𝐻𝑛𝑒𝑡

𝜕𝑊ℎ𝑙
 (7)

4.3 Interactive Lesson
When users navigate to NeuRL’s URL, they are first provided

with an interactive lesson that covers RL fundamentals and
introduces Q-learning [37], the RL algorithm used in a seminal
paper that demonstrated the potential of integrating RL with DL
[24]. The first section, shown in Figure 3, provides a high-level
overview of RL and allows students to manually control the cart
agent to test their own skill at balancing a pole. Subsequent
sections introduce: (1) states, actions, and rewards, (2) the Bellman
equation, and (3) deep Q-learning. An interactive range slider was
provided in the Bellman equation section that enabled students to
tweak the gamma hyperparameter and observe how that impacts
the agent’s long-term predicted value. Our intent was to gamify
the lesson, which has been shown to affect students’ drive and
learning positively [1].

 4.4 Playground Environment
The playground page within NeuRL enables users to

experiment with multiple RL algorithms and hyperparameters. A
control panel at the top allows users to navigate between three
separate scenes to visualize: (1) the agents, (2) the neural network
that acts as each agent’s brain, or (3) a 3D scatterplot depicting the
neural network's output at varying input states.

1067

NeuRL: A Standalone No-Code Web-Based Agent Environment to Explore Neural
Networks and Reinforcement Learning

SIGCSE TS 2025, February 26–March 1, 2025, Pittsburgh, PA, USA

Figure 3: First page of the lesson provided by NeuRL.
Students can control the agent’s movement to see if they
can balance the pole manually. Students can also scroll
down to see other concepts outlined in the lesson.

The icon located at the top right of the playground page opens
a settings panel, displayed in Figure 4, that can be used to configure
the simulation. The Environment section of the panel can be used
to switch between the cart pole, pendulum, and mountain car classic
control RL environments provided by Gymnasium [7]. The RL
Algorithm section enables students to manipulate hyperparameters
related to the RL algorithm, such as the gamma parameter, and
provides a dropdown to switch between the following RL
algorithms: Q-learning, SARSA, and A2C [3, 23, 24]. The Network
section can be used to manipulate hyperparameters related to the
neural network, such as the learning rate and the number of nodes
in the hidden layer.

The runtime control panel displayed at the bottom of the
playground page enables pausing the simulation, stepping through
the simulation frame by frame, or resetting the simulation. The
panel also provides a dropdown to change the FPS of the
simulation and a toggleable checkbox that can freeze the neural
network by preventing weights from updating.

The scene portraying the agents is displayed in Figure 4. The
two plots displayed behind the agents illustrate the average value
predicted by the neural network across all agents and the average
episode length. The color of each agent is set based on whether
the agent successfully balanced their pole for 200 frames.

The neural network scene is displayed in Figure 1 and depicts
the current status of the neural network acting as each agent’s brain.
The weights, represented by the cylinders connected to the
rectangular boxes, will update at a speed dictated by the error
perceived by the agents and the selected learning rate. The 3D
scatterplot scene enables sampling network outputs at different
input states. The scatterplot enables observing which actions are
considered to be most valuable depending on the state. Improving
agent policy interpretability is one of the key challenges preventing
many RL-based approaches from being applied in practice [12].

Figure 4: Agent scene included in the NeuRL’s playground
page. The scene portrays 256 independent agents who are
learning to balance a pole.

5 Evaluation of NeuRL

5.1 Study Context
We used NeuRL to supplement a 50-minute classroom lecture

covering RL fundamentals in a Machine Learning Engineering
(MLE) course offered at a large public university in the United
States. All students in the course were consented under IRB
Protocol #ET00022492. Students were taught RL concepts using
NeuRL in a guest lecture led by the first author. To gamify the
lesson, students were asked to: (1) control the cart agent and see
if they could balance the pole, (2) modify the gamma parameter
and see if they can get the value predicted by the Bellman equation
[2] to plateau at 10 instead of 100, and (3) adjust the gamma and
neural network learning rate hyperparameters and compete to see
who can successfully train the agents with the lowest gamma
value.

 After the lesson, students were provided with a link and a
QR code that opened the survey in their web browser. Qualtrics
[27] was used to administer the survey. The survey included
questions that evaluated NeuRL’s usability [2] and measured self-
reported learning outcomes [8]. Those who participated and
consented to research received 1% extra credit for their
participation. Those who did not participate were given an
alternate assignment carrying equal weight and requiring equal
effort.

5.2 Participants
Out of the 111 students enrolled in the MLE course, 95 students

completed our survey (Response Rate: 86%). The median age of
respondents was 18-24. Demographic information for the students
who completed the survey is presented in Table 2.

1068

SIGCSE TS 2025, February 26–March 1, 2025, Pittsburgh, PA, USA Scott Siegel, Amanpreet Kapoor, & Parisa Rashidi

Table 2. Student Demographics

 N %

Gender
 Male 71 75
 Female 23 24
 No Response 1 1
Major
 Computer Science 88 93
 Computer Engineering 6 6
 Other 1 1
Degree Program
 Undergraduate 32 34
 Graduate 63 66

5.3 Results
Student evaluations of NeuRL’s usability are displayed in

Figure 5. Overall, students embraced the use of NeuRL in the
lesson (Mean: 4.6 / 5, STD: 0.57, using a 5-point Likert scale with
Strongly agree coded as five and Strongly disagree coded as one)
and found it easy to use (Mean: 4.2 / 5, STD: 0.74). Additionally,
students felt that NeuRL improved their understanding of RL. For
the latter, students self-reported an increase in their
understanding of RL after using NeuRL (Meanpost: 3.2/5, STDpost
0.83) compared to their understanding before (Meanpre: 2.3/5,
STDpre 0.93). This difference was statistically significant when
conducting the Wilcoxon signed-rank test (Z: 98, N: 95, p: < 0.001).

In open-ended response questions, students reported that
NeuRL strengthened their understanding of advanced ML
concepts such as the Bellman Equation and Q-learning. For
instance, a student reported, "NeuRL was instrumental in
deepening [their] understanding of several advanced concepts in
neural networks and machine learning, particularly in areas that
initially posed significant challenges.” Another student reported

that they “learned about the Q-learning algorithm [through NeuRL],
which [they] did not understand prior to interacting with NeuRL.
Although the equation [was] slightly confusing, the explanations
and model [gave] it more clarity”. Students also praised the
system’s interactivity and visualizations. For instance, students
complimented the tool, stating that the “visualizations [in NeuRL]
were helpful in clarifying the math behind the concepts” and NeuRL
“helped [them] visualize how the different layers and criteria
interact with each other.”

6 Conclusion
To the best of our knowledge, NeuRL is the first example of a

web-based application that enables users to explore RL and
observe both neural networks and agent behaviors in real time.
The results from our study demonstrate that students
overwhelmingly embraced NeuRL, indicating the need for further
research to evaluate its effectiveness for AI education. We plan to
conduct more empirical experiments to assess the efficacy of
NeuRL compared to popular RL libraries and traditional learning
methods, such as passive in-person lectures or videos. We aim to
expand NeuRL into a comprehensive AI education platform and
collaborate with other institutions to integrate NeuRL into their
curriculum. We intend for NeuRL to showcase the feasibility and
value of providing interactive web-based tools for AI education
and inspire other research groups to develop similar tools that
promote active learning.

Acknowledgments
We would like to thank Dr. Vincent Bindschaedler for allowing us
to teach a lecture during their class, and Dr. Subhash Nerella for
providing valuable feedback when designing NeuRL. We
gratefully acknowledge the support of the National Science
Foundation through the NSF CAREER Award 1750192, which
funded this work.

Figure 5: Evaluations of NeuRL provided by 95 undergraduate and graduate students.

1069

NeuRL: A Standalone No-Code Web-Based Agent Environment to Explore Neural
Networks and Reinforcement Learning

SIGCSE TS 2025, February 26–March 1, 2025, Pittsburgh, PA, USA

References
[1] Ashraf Alam. 2022. A Digital Game based Learning Approach for Effective

Curriculum Transaction for Teaching-Learning of Artificial Intelligence and
Machine Learning. In 2022 International Conference on Sustainable
Computing and Data Communication Systems (ICSCDS), April 2022. 69–74.
https://doi.org/10.1109/ICSCDS53736.2022.9760932

[2] Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An empirical
evaluation of the system usability scale. Intl. Journal of Human–Computer
Interaction 24, 6 (2008), 574–594.

[3] Andrew G Barto. 2021. Reinforcement learning: An introduction by
Richards’ Sutton. SIAM Rev 6, 2 (2021), 423.

[4] Blender Foundation. 2024. Blender: Open Source 3D creation.
[5] Ricardo Cabello. 2022. three.js. Retrieved March 20, 2022 from

https://github.com/mrdoob/three.js
[6] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and

Dario Amodei. 2017. Deep reinforcement learning from human preferences.
Advances in neural information processing systems 30, (2017).

[7] Gymnasium Contributors. 2024. Gymnasium: A toolkit for developing and
comparing reinforcement learning algorithms. Retrieved from
https://gymnasium.github.io/

[8] Lindsay K Crawford, Kimberly Arellano Carmona, and Rewanshi Kumar.
2024. Examining the Impact of Project-Based Learning on Students’ Self-
Reported and Actual Learning Outcomes. Pedagogy in Health Promotion
(2024), 23733799241234065.

[9] Dave Dykstra, Brian Bockelman, Jakob Blomer, and Laurence Field. 2019.
The Open High Throughput Computing Content Delivery Network. In EPJ
Web of Conferences, 2019. EDP Sciences, 04023.

[10] Bisni Fahad Mon, Asma Wasfi, Mohammad Hayajneh, Ahmad Slim, and
Najah Abu Ali. 2023. Reinforcement Learning in Education: A Literature
Review. In Informatics, 2023. MDPI, 74.

[11] Artemij Fedosejev. 2015. React.js Essentials. Packt Publishing Ltd.
[12] Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye

Hao, and Wulong Liu. 2024. A survey on interpretable reinforcement
learning. Machine Learning (2024), 1–44.

[13] Hock-Ann Goh, Chin-Kuan Ho, and Fazly Salleh Abas. 2023. Front-end deep
learning web apps development and deployment: a review. Applied
intelligence 53, 12 (2023), 15923–15945.

[14] Daniel Graupe. 2013. Principles of artificial neural networks. World Scientific.
[15] Ronghuai Huang, D Liu, A Tlili, S Knyazeva, TW Chang, X Zhang, D Burgos,

M Jemni, M Zhang, R Zhuang, and others. 2020. Guidance on open
educational practices during school closures: Utilizing OER under COVID-
19 pandemic in line with UNESCO OER recommendation. Beijing: Smart
Learning Institute of Beijing Normal University (2020).

[16] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan
Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar,
and others. 2018. Unity: A general platform for intelligent agents. arXiv
preprint arXiv:1809.02627 (2018).

[17] Minsuk Kahng, Nikhil Thorat, Duen Horng Chau, Fernanda B Viégas, and
Martin Wattenberg. 2018. Gan lab: Understanding complex deep generative
models using interactive visual experimentation. IEEE transactions on
visualization and computer graphics 25, 1 (2018), 310–320.

[18] Kenneth R. Koedinger, Jihee Kim, Julianna Zhuxin Jia, Elizabeth A.
McLaughlin, and Norman L. Bier. 2015. Learning is Not a Spectator Sport:
Doing is Better than Watching for Learning from a MOOC. In Proceedings
of the Second (2015) ACM Conference on Learning @ Scale (L@S ’15), 2015.
Association for Computing Machinery, New York, NY, USA, 111–120.
https://doi.org/10.1145/2724660.2724681

[19] Sean Kross and Philip J Guo. 2019. Practitioners teaching data science in
industry and academia: Expectations, workflows, and challenges. In
Proceedings of the 2019 CHI conference on human factors in computing
systems, 2019. 1–14.

[20] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. 2022.
Exploration in deep reinforcement learning: A survey. Information Fusion
85, (2022), 1–22.

[21] Lin Li, Robert S Keyser, and Raven Pierson. 2021. No-cost learning material:
Perspectives from industrial and systems engineering students. Journal of
Higher Education Theory and Practice 21, 10 (2021).

[22] Lívia S Marques, Christiane Gresse von Wangenheim, and Jean CR Hauck.
2020. Teaching machine learning in school: A systematic mapping of the
state of the art. Informatics in Education 19, 2 (2020), 283–321.

[23] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016.
Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, 2016. PMLR, 1928–1937.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[25] Tony Mullen. 2011. Mastering blender. John Wiley & Sons.
[26] Adam Paszke. Google Colab. Retrieved May 12, 2024 from

https://colab.research.google.com/github/pytorch/tutorials/blob/gh-
pages/_downloads/9da0471a9eeb2351a488cd4b44fc6bbf/reinforcement_q_l
earning.ipynb

[27] Qualtrics LLC. 2024. Qualtrics.
[28] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning,

Stefano Ermon, and Chelsea Finn. 2024. Direct preference optimization:
Your language model is secretly a reward model. Advances in Neural
Information Processing Systems 36, (2024).

[29] Randi J. Rost, Bill Licea-Kane, Dan Ginsburg, John Kessenich, Barthold
Lichtenbelt, Hugh Malan, and Mike Weiblen. 2009. OpenGL Shading
Language. Pearson Education.

[30] Konstantinos I Roumeliotis and Nikolaos D Tselikas. 2023. Chatgpt and
open-ai models: A preliminary review. Future Internet 15, 6 (2023), 192.

[31] Sandra Schaffert. 2010. Strategic integration of open educational resources
in higher education: objectives, case studies, and the impact of Web 2.0 on
universities. Changing cultures in higher education: Moving ahead to future
learning (2010), 119–131.

[32] Adish Singla, Anna N. Rafferty, Goran Radanovic, and Neil T. Heffernan.
2021. Reinforcement Learning for Education: Opportunities and Challenges.
https://doi.org/10.48550/arXiv.2107.08828

[33] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Charles Nicholson, Nick
Kreeger, Ping Yu, Shanqing Cai, Eric Nielsen, David Soegel, Stan Bileschi,
and others. 2019. Tensorflow.js: Machine learning for the web and beyond.
Proceedings of Machine Learning and Systems 1, (2019), 309–321.

[34] Iro Voulgari, Marvin Zammit, Elias Stouraitis, Antonios Liapis, and
Georgios Yannakakis. 2021. Learn to Machine Learn: Designing a Game
Based Approach for Teaching Machine Learning to Primary and Secondary
Education Students. In Proceedings of the 20th Annual ACM Interaction
Design and Children Conference (IDC ’21), 2021. Association for Computing
Machinery, New York, NY, USA, 593–598.
https://doi.org/10.1145/3459990.3465176

[35] Hao-nan Wang, Ning Liu, Yi-yun Zhang, Da-wei Feng, Feng Huang, Dong-
sheng Li, and Yi-ming Zhang. 2020. Deep reinforcement learning: a survey.
Frontiers of Information Technology & Electronic Engineering 21, 12 (2020),
1726–1744.

[36] Zijie J Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred
Hohman, Minsuk Kahng, and Duen Horng Polo Chau. 2020. CNN explainer:
learning convolutional neural networks with interactive visualization. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2020), 1396–1406.

[37] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine
learning 8, (1992), 279–292.

[38] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han,
and Yang Tang. 2023. A Brief Overview of ChatGPT: The History, Status
Quo and Potential Future Development. IEEE/CAA Journal of Automatica
Sinica 10, 5 (2023), 1122–1136. https://doi.org/10.1109/JAS.2023.123618

[39] Scale & Ship Faster with a Composable Web Architecture | Netlify. Retrieved
May 3, 2024 from https://www.netlify.com/

1070

