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Abstract 
Neural networks and reinforcement learning (RL) are 
fundamental to machine learning (ML) and AI. Given the 
widespread adoption of AI algorithms in industrial sectors, 
ensuring students understand these concepts will prepare them 
for a technology-driven job market. In this experience report, we 
introduce NeuRL, a free and accessible no-code web-based 
application that allows innovative real-time exploration of RL and 
neural networks. NeuRL provides interactive 3D WebGL 
environments, enabling students to experiment with multiple 
popular RL algorithms and observe the evolution of agents and 
neural networks as agents learn to accomplish tasks. To ensure 
NeuRL runs smoothly on low-performance computers, we created 
a custom neural network and RL library written in the OpenGL 
Shading Language (GLSL). To evaluate NeuRL’s effectiveness, we 
introduced it to teach RL fundamentals to 111 students enrolled in 
an ML course. After the lesson, students completed a survey that 
assessed NeuRL’s usability and learning effectiveness. Students 
found NeuRL easy to use and enjoyed its inclusion during the 
lesson. To the best of our knowledge, NeuRL is the first tool that 
enables students from any background to explore RL and observe 
both neural networks and agent behaviors in real time. NeuRL 
demonstrates the feasibility and value of providing accessible 
web-based tools that empower students to explore AI concepts in 
a manner that transcends conventional teaching methodologies. 
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1 Introduction 
Machine Learning (ML) and Artificial Intelligence (AI) have 
permeated everyday life and are poised to become even more 
prevalent in the future. Despite ML and AI's impact on society, the 
majority of people have little understanding of the technology 
involved, leading to a fear of automation and AI that overshadows 
its potential benefits [22]. Equipping students in K-12 and higher 
education with an understanding of these tools is essential for 
their future application in crucial domains, such as addressing 
societal challenges, interpreting complex information, and 
identifying cultural and social biases that affect existing models 
[34]. One way to educate our students about AI is to develop 
interactive Open Educational Resources (OERs) and Massive Open 
Online Courses (MOOCs) [18, 31]. OERs are defined as “teaching, 
learning and research materials that make use of appropriate 
tools, such as open licensing, to permit their free reuse, 
continuous improvement, and repurposing by others for 
education purposes” by the United Educational, Scientific and 
Cultural Organization (UNESCO) [21]. The need for online OERs 
became even more evident during the COVID-19 pandemic, which 
prevented 1.21 billion students from attending school in person 
[15]. In this context, readily accessible OERs are crucial for ML 
and AI education. 

To address the need for online ML and AI education resources, 
we have developed NeuRL, an open-source, web-based application  
designed for interactive exploration of neural networks and RL.  
Neural networks and RL are integral components of ML and AI and  
are used in popular state-of-the-art AI systems, such as ChatGPT 
[30, 38] and large language models (LLMs) [6, 28]. NeuRL is 
compatible with most computers and mobile devices and is 
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accessible via this link.1 It offers an engaging, hands-on platform 
for students to interact directly with these concepts. 

To support educators in integrating NeuRL into their 
classrooms, we developed tutorial videos, accessible on YouTube, 
to guide them through NeuRL’s features and potential classroom 
applications. Additional resources are available for instructors on 
GitHub.2 To evaluate NeuRL's effectiveness, we conducted a study 
during a 50-minute class session with 111 undergraduate and 
graduate students. Students, equipped with laptops, used NeuRL 
to participate in an introductory lesson on RL and deep Q-learning 
[24]. Following the lesson, students completed a system usability 
scale (SUS) survey and a few additional questions to assess their 
experience with NeuRL. 

The remainder of this experience report is structured as follows:  
2 presents an overview of neural networks and RL. Section 3 
compares NeuRL with other similar tools for AI education. Section 
4 provides the motivation for NeuRL and outlines its design and 
key features. Section 5 provides details about the classroom study 
and presents the survey results. Finally, section 6 outlines the 
importance of NeuRL for AI education and our future goals. 

2 Neural Networks and RL 
Supervised learning, unsupervised learning, and RL are the three 
primary subtypes of ML [10]. Models trained using supervised 
learning rely on labeled data, while those trained using 
unsupervised learning rely on unlabeled data. In RL, models act as 
agents within an environment [3, 20]. These agents receive 
information about their environment, known as their state, and 
take actions to achieve predefined goals. Agents receive feedback 
in the form of rewards, indicating whether their previous actions 
led to more favorable states. For example, an agent could be a self-
driving car. If the agent can successfully avoid obstacles, it will 
receive a reward, increasing the value of the actions that helped it 
accomplish its goal. 

Neural networks, also known as artificial neural networks 
(ANNs), were originally inspired by biological neurons in the 
brain [14]. Just as biological neurons rely on axon terminals to 
connect to other neurons’ dendrites, neurons in ANNs are 
interconnected by individual weights. These artificial neurons, 
commonly called nodes, are organized into layers in classic ANNs. 
The neural network utilized in NeuRL consists of three layers, as 
depicted in Figure 1. The first layer is known as the input layer, 
where each node corresponds to a single input to the network. In 
RL, an example of an input could be an agent's position on a single 
axis. The last layer is termed the output layer, where each node 
corresponds to a single output produced by the network. In RL, an 
example of an output could be the predicted value of performing 
a specific action, such as moving left or right. The second layer is 
called the hidden layer, as it is typically not directly observed 
during neural network training. Hidden layers apply activation 
functions that transform information received from previous 
layers, enabling neural networks to model nonlinear 
relationships. Although NeuRL utilizes a single hidden layer, 
ANNs can contain multiple hidden layers. 

 
1 https://neu-rl.netlify.app 

 

 

Figure 1: Illustration of a neural network provided within 
NeuRL. The rectangular boxes represent individual nodes. 
The nodes are organized into three columns, commonly 
referred to as layers. The leftmost column is the input layer, 
the column in the middle is the hidden layer, and the 
column to the right is the output layer. The weights are 
represented by the curved cylinders that are either green or 
blue. Green weights correspond to positive values, while 
blue weights correspond to negative values. Students can 
control the learning rate, which determines the speed at 
which weights change. 

3 Tools for AI Education 
Many state-of-the-art (SOTA) models, such as ChatGPT, contain 
billions of parameters and demand substantial computing 
resources to operate [38]. Running large models on cloud servers 
removes the need for users to purchase hardware, but maintaining 
cloud-based servers becomes increasingly more expensive as the 
number of simultaneous users increases. Fortunately, the 
fundamental concepts that empower SOTA models can often be 
taught using smaller model variants, which can run on low-power 
machines. Providing such models for free in web browsers 
expands public access to ML and AI education because it removes 
the need to understand code or preinstall deep learning (DL) 
libraries on specialized hardware. Goh et al. [13] provides a 
detailed list of web applications for ML visualization and 
education. 

Deep Playground [7] provides a no-code solution for users to 
experiment with various neural network hyperparameters, such 
as the learning rate, the number of nodes in the hidden layer, or 
the number of hidden layers. The tool includes 2D visualizations 
of neural network weights as well as heatmaps to display the 
outputs of individual neural network nodes. Deep Playground 
relies on a custom neural network library written in JavaScript to 
train neural networks. Training neural networks in JavaScript 
requires the machine's CPU to perform each computation. 
Because JavaScript is inherently a single-threaded programming 
language, designating CPUs to perform neural network 

2 https://github.com/snsie/neurl-resources 
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computations can quickly overload machines. CNN Explainer [36] 
and GAN Lab [17] are web-based tools that teach the 
fundamentals of convolutional neural networks (CNNs) and 
generative adversarial networks (GANs), respectively. Both tools 
rely on the Tensorflow.js DL library [33] which provides a CPU-
bound JavaScript API to interact with smaller DL models. NeuRL 
originally relied on Tensorflow.js, but the library’s CPU-bound 
API became a significant performance bottleneck when interfaced 
with hundreds of agents. Therefore, we created a custom library 
that provided a GPU-bound interface between agents and neural 
networks. 

To the best of our knowledge, available free resources for RL 
education necessitate coding skills and usually depend on DL 
libraries. OpenAI’s Gymnasium [7] library is the most popular 
known resource for testing RL algorithms but contains limited 
visualization features and does not provide a no-code user 
interface. ML-Agents [16] is a popular RL resource that uses the 
Unity game engine to visualize trained agents. Unfortunately, ML-
Agents requires users to install Unity and a suite of Python-based 
libraries. Additionally, coding knowledge is required to modify 
experimental setups within ML-Agents. Table 1 compares 
NeuRL’s key features with Gymnasium and ML-Agents.  

Table 1. Comparison of Key Features 

Feature NeuRL 
ML-

Agents 
Gymnasium 

No Installation 
Required ✓ ✗ ✗ 

No DL Library 
Dependencies ✓ ✗ ! 

Compatible with 
Mobile Devices ✓ ✗ ! 

Includes Interactive 3D 
Visualizations ✓ ✓ ! 

No Coding Knowledge 
Required ✓ ! ✗ 

Entries marked with an exclamation mark imply limited compatibility.  

4 Motivation and Design 
Despite the numerous potential applications of RL in society, 

the field is still considered to be in its infancy [35]. RL-related 
research is hindered by several key challenges, such as a lack of 
simulation environments, limited observability of environments 
as agents are being trained, and a lack of learning resources [10, 
32]. Another significant challenge is that the current RL resources 
necessitate software installation beforehand, which has proven to 
be a frustrating obstacle for students [19]. Offering a free and 
accessible no-code web-based tool for RL education that doesn’t 
require installation or coding knowledge and enables real-time 
observation of agents and networks addresses these needs. NeuRL 
is the first web-based RL visualization tool designed for education, 
with the potential to stimulate RL-related research. 

4.1 Software Overview  
When developing NeuRL, we prioritized software that offered 

scalability and accessibility. To achieve both objectives, NeuRL 
was designed as a single-page application (SPA) that can be 
accessed through any modern web browser. NeuRL is hosted as 
static HTML files and served free of charge using Netlify’s cloud 
platform [39]. Because services such as Cloudflare [9] provide free 
unlimited bandwidth for static websites, hosting NeuRL will 
remain free, regardless of the number of users. 

NeuRL’s user interface (UI) was created using Typescript and 
React [11] and the interactive 3D WebGL environments were 
created using Three.js [5]. Blender [4] was used to design complex 
3D objects and generate UV texture maps [25] to combine multiple 
material objects into a single material object. 

4.2 Neural Network and RL Library 
Because JavaScript is a single-threaded language, training 

multiple agents in parallel using neural networks would not be 
feasible in real time. Therefore, a custom neural network and RL 
library was written using GLSL [29] and compiled into eight 
separate compute shaders. Parameters in compute shaders are 
stored as 2D matrices of pixels, with each pixel holding four 
separate floating-point values. GLSL scripts enable the 
manipulation of individual pixels and are compiled onto GPUs, 
enabling parallelization without requiring the preinstallation of 
DL libraries, a major advantage of using NeuRL. Calculating the 
neural network's forward and backward passes and updating 
agent states are broken into eight sequential steps (Figure 2).  

The 3D models depicted in NeuRL are created as meshes using 
Three.js. Meshes contain a geometry object that determines their 
vertex positions and a material object that determines their  
appearance. Both objects rely on separate GLSL shaders to compile  
changes in position and appearance onto GPUs. To interface 
meshes with NeuRL’s RL library, we modified these geometry and 
material shaders to track specific parameters within our compute 
shader RL library and visually represent that information by 
updating the mesh’s position or color. This processing pipeline 
takes place entirely on GPUs and is the fundamental reason why 
a custom neural network and RL library was created for NeuRL. 

Python-based implementations to explore RL, such as 
PyTorch’s deep Q-learning tutorial [26], often use a single agent’s  
replay memory to train networks. The environment is simulated at  
a very high frequency, which reduces the time a user has to wait 
but makes it infeasible to observe agents as they learn. Ensuring 
users can visualize every step of the simulation was an important  
feature we wanted to provide, but it bound the simulation frequency  
to the user’s screen refresh rate, which is normally 30-60 FPS. To  
reduce the time users have to wait, our model is trained using  
batches of 256 independent agents. This approach reduced average  
training time to less than a couple of minutes while allowing users 
to visualize and manually control every step of the simulation. 

To validate the accuracy of our compute shader pipeline, a 
separate testing library was created that compares the parameters 
stored on each compute shader with a neural network 
implementation written in Python.  
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Figure 2: The neural network and RL library that is compiled  
onto eight separate compute shaders. The arrows in the center  
of the image depict dependencies between individual shaders.  

4.2.1 Compute Shader 1. The first compute shader multiplies 
current agent states with the weight matrix that connects the 
input and hidden layers, as shown in Equation (1). In this 
equation, St represents the agent state matrix at time t, Whl is the 
hidden layer weight matrix, and Hnet is the matrix product. 

𝐻𝑛𝑒𝑡 = 𝑆𝑡 ∙ 𝑊ℎ𝑙            (1) 

4.2.2 Compute Shader 2. The second compute shader applies an 
activation function to each element of Hnet, resulting in the hidden 
layer output matrix, Hout. It then multiplies Hout with the weight 
matrix connecting the hidden layer to the output layer, Wol, to 
obtain Onet, the output layer sum, as shown in Equation (2). The 
ReLU activation function is used by default, but users can select a 
different activation function for experimentation. 

𝑂𝑛𝑒𝑡 = 𝐻𝑜𝑢𝑡 ∙ Wol = 𝑓ℎ𝑙(𝐻𝑛𝑒𝑡) ∙ Wol         (2) 

4.2.3 Compute Shader 3. The third compute shader applies the 
output layer activation function to Onet, then uses the policy 
dictated by the selected RL algorithm to select an action. The 
selected action, At, is then used to derive the next potential state, 
as shown in Equation (3). G corresponds to the environmental 
procedure to update each agent’s state, which is outlined within 
Gymnasium’s source code [7]. An asterisk is used for this state 
because the agent may not assume that state if it is determined to 
be at a terminal step. 

𝑆𝑡+1
∗ = 𝐺(𝑆𝑡 , 𝐴𝑡)           (3) 

4.2.4 Compute Shaders 4 and 5. The fourth and fifth compute 
shaders follow the same procedure outlined in compute shaders 1 
and 2, except the potential next state, S*t+1, derived in compute 
shader 3, is used as the input to the neural network instead of St. 

4.2.5 Compute Shader 6. The sixth compute shader uses the 
chain rule to derive the partial derivative of loss with respect to 

Onet, as shown in Equation (4). In this equation, 
𝜕𝐸

𝜕𝑂𝑜𝑢𝑡
 is derived 

using the selected RL algorithm and the mean squared error loss 

function and 
𝜕𝑂𝑜𝑢𝑡

𝜕𝑂𝑛𝑒𝑡
 is derived by calculating the derivative of the 

output layer activation function. 

𝜕𝐸

𝜕𝑂𝑛𝑒𝑡
=

𝜕𝐸

𝜕𝑂𝑜𝑢𝑡
∙

𝜕𝑂𝑜𝑢𝑡

𝜕𝑂𝑛𝑒𝑡
             (4) 

4.2.6 Compute Shader 7. The seventh compute shader derives 
the partial derivative of error with respect to Hnet. The chain rule 

is again used, as shown in Equation (5). In this equation, 
𝜕𝑂𝑛𝑒𝑡

𝜕𝐻𝑜𝑢𝑡
 is 

equal to the output layer weight matrix. 
𝜕𝐻𝑜𝑢𝑡

𝜕𝐻𝑛𝑒𝑡
 is equal to the 

derivative of the hidden layer activation function. 

𝜕𝐸

𝜕𝐻𝑛𝑒𝑡
=

𝜕𝐸

𝜕𝑂𝑛𝑒𝑡
∙

𝜕𝑂𝑛𝑒𝑡

𝜕𝐻𝑜𝑢𝑡
∙

𝜕𝐻𝑜𝑢𝑡

𝜕𝐻𝑛𝑒𝑡
          (5) 

4.2.7 Compute Shader 8. The eighth and final compute shader 
updates both the neural network weights and current agent states. 
Agent states are updated by copying the potential next states 
stored in the third compute texture if the agent’s episode hasn’t 
ended. Otherwise, the agent’s state is reset.  

Equation (6) depicts the algorithm to update the weights 

connected to the output layer. In this equation, 
𝜕𝑂𝑛𝑒𝑡

𝜕𝑊𝑜𝑙
 is equal to 

Hout, and η is the learning rate. 

𝑊𝑜𝑙
+ = 𝑊𝑜𝑙 − 𝜂

𝜕𝐸

𝜕𝑊𝑜𝑙
= 𝑊𝑜𝑙 − 𝜂

𝜕𝐸

𝜕𝑂𝑛𝑒𝑡
∙

𝜕𝑂𝑛𝑒𝑡

𝜕𝑊𝑜𝑙
         (6) 

Equation (7) depicts the algorithm to update the weights 

connected to the hidden layer. In this equation,  
𝜕𝐻𝑛𝑒𝑡

𝜕𝑊ℎ𝑙
 is equal to 

each agent’s current state, St. 

𝑊ℎ𝑙
+ = 𝑊ℎ𝑙 − 𝜂

𝜕𝐸

𝜕𝑊ℎ𝑙
= 𝑊ℎ𝑙 − 𝜂

𝜕𝐸

𝜕𝐻𝑛𝑒𝑡
∙

𝜕𝐻𝑛𝑒𝑡

𝜕𝑊ℎ𝑙
         (7) 

4.3 Interactive Lesson 
When users navigate to NeuRL’s URL, they are first provided 

with an interactive lesson that covers RL fundamentals and 
introduces Q-learning [37], the RL algorithm used in a seminal 
paper that demonstrated the potential of integrating RL with DL 
[24]. The first section, shown in Figure 3, provides a high-level 
overview of RL and allows students to manually control the cart 
agent to test their own skill at balancing a pole. Subsequent 
sections introduce: (1) states, actions, and rewards, (2) the Bellman 
equation, and (3) deep Q-learning. An interactive range slider was 
provided in the Bellman equation section that enabled students to 
tweak the gamma hyperparameter and observe how that impacts 
the agent’s long-term predicted value. Our intent was to gamify 
the lesson, which has been shown to affect students’ drive and 
learning positively [1]. 

 4.4 Playground Environment 
The playground page within NeuRL enables users to 

experiment with multiple RL algorithms and hyperparameters. A 
control panel at the top allows users to navigate between three 
separate scenes to visualize: (1) the agents, (2) the neural network 
that acts as each agent’s brain, or (3) a 3D scatterplot depicting the 
neural network's output at varying input states.  
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Figure 3: First page of the lesson provided by NeuRL. 
Students can control the agent’s movement to see if they 
can balance the pole manually. Students can also scroll 
down to see other concepts outlined in the lesson.  

The icon located at the top right of the playground page opens  
a settings panel, displayed in Figure 4, that can be used to configure  
the simulation. The Environment section of the panel can be used 
to switch between the cart pole, pendulum, and mountain car classic  
control RL environments provided by Gymnasium [7]. The RL  
Algorithm section enables students to manipulate hyperparameters  
related to the RL algorithm, such as the gamma parameter, and 
provides a dropdown to switch between the following RL 
algorithms: Q-learning, SARSA, and A2C [3, 23, 24]. The Network 
section can be used to manipulate hyperparameters related to the 
neural network, such as the learning rate and the number of nodes 
in the hidden layer. 

The runtime control panel displayed at the bottom of the  
playground page enables pausing the simulation, stepping through  
the simulation frame by frame, or resetting the simulation. The 
panel also provides a dropdown to change the FPS of the 
simulation and a toggleable checkbox that can freeze the neural 
network by preventing weights from updating.  

The scene portraying the agents is displayed in Figure 4. The 
two plots displayed behind the agents illustrate the average value 
predicted by the neural network across all agents and the average 
episode length. The color of each agent is set based on whether 
the agent successfully balanced their pole for 200 frames. 

The neural network scene is displayed in Figure 1 and depicts  
the current status of the neural network acting as each agent’s brain.  
The weights, represented by the cylinders connected to the 
rectangular boxes, will update at a speed dictated by the error 
perceived by the agents and the selected learning rate. The 3D 
scatterplot scene enables sampling network outputs at different 
input states. The scatterplot enables observing which actions are 
considered to be most valuable depending on the state. Improving  
agent policy interpretability is one of the key challenges preventing  
many RL-based approaches from being applied in practice [12]. 

 

 

Figure 4: Agent scene included in the NeuRL’s playground 
page. The scene portrays 256 independent agents who are 
learning to balance a pole.  

5 Evaluation of NeuRL 

5.1 Study Context 
We used NeuRL to supplement a 50-minute classroom lecture 

covering RL fundamentals in a Machine Learning Engineering 
(MLE) course offered at a large public university in the United 
States. All students in the course were consented under IRB 
Protocol #ET00022492. Students were taught RL concepts using 
NeuRL in a guest lecture led by the first author. To gamify the 
lesson, students were asked to: (1) control the cart agent and see 
if they could balance the pole, (2) modify the gamma parameter 
and see if they can get the value predicted by the Bellman equation 
[2] to plateau at 10 instead of 100, and (3) adjust the gamma and 
neural network learning rate hyperparameters and compete to see 
who can successfully train the agents with the lowest gamma 
value. 

      After the lesson, students were provided with a link and a 
QR code that opened the survey in their web browser. Qualtrics 
[27] was used to administer the survey. The survey included 
questions that evaluated NeuRL’s usability [2] and measured self-
reported learning outcomes [8]. Those who participated and 
consented to research received 1% extra credit for their 
participation. Those who did not participate were given an 
alternate assignment carrying equal weight and requiring equal 
effort.  

5.2 Participants 
Out of the 111 students enrolled in the MLE course, 95 students 

completed our survey (Response Rate: 86%). The median age of 
respondents was 18-24. Demographic information for the students 
who completed the survey is presented in Table 2. 
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Table 2. Student Demographics 

 N % 

Gender   
    Male 71 75 
    Female 23 24 
    No Response 1 1 
Major   
    Computer Science 88 93 
    Computer Engineering 6 6 
    Other 1 1 
Degree Program   
    Undergraduate 32 34 
    Graduate 63 66 

5.3 Results 
Student evaluations of NeuRL’s usability are displayed in 

Figure 5. Overall, students embraced the use of NeuRL in the 
lesson (Mean: 4.6 / 5, STD: 0.57, using a 5-point Likert scale with 
Strongly agree coded as five and Strongly disagree coded as one) 
and found it easy to use (Mean: 4.2 / 5, STD: 0.74). Additionally, 
students felt that NeuRL improved their understanding of RL. For 
the latter, students self-reported an increase in their 
understanding of RL after using NeuRL (Meanpost: 3.2/5, STDpost 
0.83) compared to their understanding before (Meanpre: 2.3/5, 
STDpre 0.93). This difference was statistically significant when 
conducting the Wilcoxon signed-rank test (Z: 98, N: 95, p: < 0.001).  

In open-ended response questions, students reported that 
NeuRL strengthened their understanding of advanced ML 
concepts such as the Bellman Equation and Q-learning. For 
instance, a student reported, "NeuRL was instrumental in 
deepening [their] understanding of several advanced concepts in 
neural networks and machine learning, particularly in areas that 
initially posed significant challenges.” Another student reported 

that they “learned about the Q-learning algorithm [through NeuRL], 
which [they] did not understand prior to interacting with NeuRL. 
Although the equation [was] slightly confusing, the explanations 
and model [gave] it more clarity”. Students also praised  the 
system’s interactivity and visualizations. For instance, students 
complimented the tool, stating that the “visualizations [in NeuRL] 
were helpful in clarifying the math behind the concepts” and NeuRL 
“helped [them] visualize how the different layers and criteria 
interact with each other.” 

6 Conclusion 
To the best of our knowledge, NeuRL is the first example of a 

web-based application that enables users to explore RL and 
observe both neural networks and agent behaviors in real time. 
The results from our study demonstrate that students 
overwhelmingly embraced NeuRL, indicating the need for further 
research to evaluate its effectiveness for AI education. We plan to 
conduct more empirical experiments to assess the efficacy of 
NeuRL compared to popular RL libraries and traditional learning 
methods, such as passive in-person lectures or videos. We aim to 
expand NeuRL into a comprehensive AI education platform and 
collaborate with other institutions to integrate NeuRL into their 
curriculum. We intend for NeuRL to showcase the feasibility and 
value of providing interactive web-based tools for AI education 
and inspire other research groups to develop similar tools that 
promote active learning. 
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Figure 5: Evaluations of NeuRL provided by 95 undergraduate and graduate students. 
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